
Discrete Electrical Network Approximations for the Solution to the
Continuous Dirichlet Problem on the Unit Rectangle

Denote the unit rectangle by R. Suppose γ : R → R
+ is a con-

ductivity function over the unit rectangle. Given a boundary func-
tion φ : ∂R → R, there exists a unique electrical current function
u∞ : R → R such that u∞|∂R = φ and which is γ-harmonic, i.e.
∇(γ∇u∞) = 0. Additionally, u∞ can be characterized as the min-
imizer over the γ-Dirchlet norm, ‖u‖2γ =

∫
R
γ|∇u∞|2dA, over all

functions u : R → R with u|∂R = φ.

Take an n by n grid of the unit rectangle, and divide each smaller
square into two congruent triangles, whose shared leg is the diagonal
of the square from the top left corner to the bottom right. Enumer-
ating these triangles in some way, R = ∪2n2

i=1Ti. Let Sn = {u : R →
R : u is continuous and differentiable except perhaps on ∂Ti and
∇u = 0 where it exists.}; in other words, u ∈ Sn if and only if it is
continuous and piecwise linear over the triangles of the n by n grid.
Define a new conductivity function γn : R → R

+ by γn(p) = γi if
p ∈ Ti where γi is the average of γ over Ti, and a new boundary
function φn : ∂R → R

+ where φn(p) = φ(p) if p is an intersection
point of the grid on the boundary (including the corners) and φn

is linearly interpolated between these points. Now, note that with
these new conductivity and boundary functions, we can identify the
n by n grid with a discrete electrical lattice network. Each inte-
rior edge of the grid is the leg of two triangles Ti and Tj, to this
edge in our discrete electrical network we associate the conductivity
γi+γj. The boundary data of this network will be given by the val-
ues of φn at the boundary vertices. Define un to be the minimizer
of the γ-Dirichlet norm over function u ∈ Sn such that u|∂R = φn.
Such a minimizer exists and is unique because it is simply the solu-
tion of the Dirichlet problem for our discrete electrical network, as

‖u‖2γ =
∑

2n2

i=1
γi|∇Ti

u|2|Ti| where |Ti| is the area of our triangles and
∇Ti

u is the (constant) value of the gradient of u in Ti.

Our primary claim is that ‖un − u∞‖γ → 0 as n → ∞, i.e., the
discrete γ-harmonic solutions of our electrical network approximate

1



the smooth case in the limit.

‖un − u∞‖2γ =

∫
R

γ|∇(un − u∞)|2dA

=

∫
R

γ∇(un − u∞) · ∇(un − u∞)dA

=

∫
R

γ|∇u∞|2dA− 2

∫
R

γ(∇u∞ · ∇un)dA+

∫
R

γ|∇un|
2dA

= ‖u∞‖2γ + ‖un‖
2

γ − 2〈u∞, un〉γ

Applying integration by parts, we see that

〈u∞, un〉γ =

∫
R

(γ∇u∞) · ∇undA

=

∫
∂R

un(γ∇u∞ · ~n)ds−

∫
R

un∇(γ∇u∞)dA

However, as u∞ is γ-harmonic, ∇(γ∇u∞) = 0, so we have

〈u∞, un〉γ =

∫
∂R

un(γ∇u∞ · ~n)ds

Note that un|∂R = φn → φ = u∞|∂R uniformly, so, reversing inte-
gration by parts and reusing γ-harmonicity of u∞:

lim
n→∞

〈un, u∞〉γ =

∫
∂R

lim
n→∞

(un(γ∇u∞ · ~n))ds

=

∫
∂R

u∞(γ∇u∞ · ~n)ds

=

∫
∂R

u∞(γ∇u∞ · ~n)ds−

∫
R

u∞∇(γ∇u∞)dA

=

∫
R

γ|∇u∞|2dA

= ‖u∞‖2γ
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It remains to be shown that

lim
n→∞

‖un‖γ = ‖u∞‖γ .

Define the following sequence of semi-norms of u : R → R:

‖u‖2γ,n =
2n2∑
i=1

γi(max
Ti

|ux|
2 +max

Ti

|uy|
2)|Ti|

Note that if u ∈ Sn, since |ux| and |uy| are constant over each Ti,

‖u‖2γ,n =
2n2∑
i=1

γi|∇Ti
u|2|Ti|

=
2n2∑
i=1

|∇Ti
u|2

∫
Ti

γdA

=

∫
R

γ|∇u|2dA

= ‖u‖2γ

Consider the minimizer, vn, of these norms over all functions u : R →
R such that u(x, y) = φn(x, y) for all (x, y) which are intersection
points of the n by n grid on the boundary.

Given one of these functions u : R → R, create ū ∈ Sn by defin-
ing ū(x, y) = u(x, y) for (x, y) intersection points on the n by n
grid, then linearly interpolating through the rectangle.

Note that maxTi
ūx ≤ maxTi

ux. One leg of Ti is parallel to the x-axis
(call this leg Ti,x), and ū and u have the same values at either end,
by construction of ū. Hence by the single variable mean value theo-
rem, there is ξ ∈ Ti,x such that ux(ξ) = (u(b)− u(a))/|Ti,x| = ūx(ζ)
for all ζ ∈ Ti,z, since ūx is constant over Ti,x, where a and b are the
endpoints of Ti,x. Hence, maxTi

ux ≥ ūx = maxTi
ūx. Likewise, since

one leg of Ti is parallel to the y-axis, maxTi
uy ≥ ūy, whereby we
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conclude

‖u‖γ,n =
2n2∑
i=1

γi(max
Ti

|ux|
2 +max

Ti

|uy|
2)|Ti|

≥
2n2∑
i=1

γi(|ux|
2

Ti
+ |uy|

2

Ti
)|Ti|

= ‖ū‖γ,n

= ‖ū‖γ

Since ū ∈ Sn and ū|∂R = φn,

‖u‖γ,n ≥ ‖ū‖γ,n = ‖ū‖γ ≥ ‖un‖γ = ‖un‖γ,n.

So un = vn. Thus, since u∞|∂R = φ, and therefore u∞(x, y) =
φn(x, y) for all (x, y) whcich are intersection points of the n by n
grid on the boundary, we have that

‖u∞‖γ,n ≥ ‖un‖γ,n = ‖un‖γ .

Furthermore,

lim
n→∞

‖u‖γ,n = ‖u‖γ

as ‖u‖γ,n is simply a Riemann sum of ‖u‖γ. Hence,

lim
n→∞

‖u∞‖γ,n = ‖u∞‖γ ≥ lim sup
n→∞

‖un‖γ .

There exists a heuristic argument for the fact that ‖u∞‖ ≤ lim infn→∞ ‖un‖γ,
however, a complete proof eludes us.
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